RADIOACTIVITY-NUCLEAR FISSION AND NUCLEAR FUSION

info

Radioactive disintegration/decay can be initiated in an industrial laboratory through two chemical methods:

    a) nuclear fission

     b) nuclear fusion.

a)Nuclear fission

Nuclear fission is the process which a fast moving neutron bombards /hits /knocks a heavy unstable nuclide releasing lighter nuclide, three daughter neutrons and a large quantity of energy.  

Nuclear fission is the basic chemistry behind nuclear bombs made in the nuclear reactors.

The three daughter neutrons becomes again fast moving neutron bombarding / hitting /knocking  a heavy unstable nuclide releasing lighter nuclides, three more daughter neutrons each and a larger quantity of energy setting of a chain reaction

Examples of nuclear equations showing nuclear fission

10 n  +  235 b U  -> 9038Sr  + c 54Xe + 310n  +  a

10 n   +        2713Al          ->       2813Al        +        y  +   a

10 n   +      28aAl   ->         b11Na       +    42  He

 a0 n   +       147N   ->         14bC  +      11H

10 n   + 11H                 ->       21H                   +         a   

10 n     +  235 92 U ->   95 42 Mo +  139 57 La + 210n + 7 a

b) Nuclear fusion

Nuclear fusion is the process which smaller nuclides join together to form larger / heavier nuclides and releasing a large quantity of energy.

 Very high temperatures and pressure is required to overcome the repulsion between the atoms.

Nuclear fusion is the basic chemistry behind solar/sun radiation.

 Two daughter atoms/nuclides of Hydrogen fuse/join to form Helium atom/nuclide on the surface of the sun releasing large quantity of energy in form of heat and light.

21H      +    21H     ->     abHe       +      10n

  21H       +    a     ->     32He   

   21H       +       21H    ->    a       +    11H

 4  11H       ->     42He       +         a

 147H     +   a    ->  178O      +           11H

C: HALF LIFE PERIOD (t1/2)

The half-life period is the time taken for a radioactive nuclide to spontaneously decay/ disintegrate to half its original mass/ amount.

It is usually denoted t 1/2.

The rate of radioactive nuclide disintegration/decay is constant for each nuclide.

The table below shows the half-life period of some elements.

Element/NuclideHalf-life period(t 1/2 )
238 92 U4.5 x 109 years
14 6 C5600 years
229 88 Ra1620 years
35 15 P14 days
210 84 Po0.0002 seconds

The less the half life the more unstable the nuclide /element.

The half-life period is determined by using a Geiger-Muller counter (GM tube)

.A GM tube is connected to ratemeter that records the count-rates per unit time.

 This is the rate of decay/ disintegration of the nuclide.

 If the count-rates per unit time fall by half, then the time taken for this fall is the half-life period.

Examples

a)A radioactive substance gave a count of 240 counts per minute but after 6 hours the count rate were 30 counts per minute. Calculate the half-life period of the substance.

               If  t 1/2  = x

              then  240 –x–>120 –x–>60 –x—>30

               From 240 to 30 =3x =6 hours

                =>x  = t 1/2 = ( 6 / 3 )

                            = 2 hours

b) The count rate of a nuclide fell from 200 counts per second to 12.5 counts per second in 120 minutes.

Calculate the half-life period of the nuclide.

If  t 1/2  =x

          then

          200 –x–>100 –x–>50 –x—>25 –x—>12.5

          From 200 to 12.5 =4x =120 minutes

           =>x  = t 1/2 = ( 120 / 4 )

          = 30  minutes

c) After 6 hours the count rate of a nuclide fell from 240 counts per second to 15 counts per second on the GM tube. Calculate the half-life period of the nuclide.

          If  t 1/2  = x

          then  240 –x–>120 –x–>60 –x—>30 –x—>15

          From 240 to 15 =4x =6 hours

           =>x  = t 1/2 = ( 6  / 4 )=  1.5  hours

d) Calculate the mass of nitrogen-13 that remain from 2 grams after 6 half-lifes if the half-life period of nitrogen-13 is 10 minutes.

          If  t 1/2  = x then: 

2 —x–>1 –2x–>0.5 –3x—>0.25 –4x–>0.125–5x—>0.0625–6x—>0.03125

 After the 6th half life 0.03125 g of nitrogen-13 remain.

e) What fraction of a gas remains after 1hour if its half-life period is 20 minutes?

          If  t 1/2  = x then:

          then  60 /20  = 3x

          1   –x–> 1/2 –2x–> 1/4  –3x—> 1/8

          After the 3rd half-life  1/8   of the gas remain

f) 348 grams of a nuclide A was reduced to 43.5 grams after 270days.Determine the half-life period of the nuclide.

          If  t 1/2  = x then: 

          348 –x–>174 –2x–>87 –3x—>43.5

           From 348 to 43.5=3x =270days

           =>x  = t 1/2 = ( 270 / 3 )

                             =  90  days

g) How old is an Egyptian Pharaoh in a tomb with 2grams of 14C if the normal 14C  in a present tomb is 16grams.The half-life period of 14C is 5600years.

                   If  t 1/2  = x  = 5600 years then:

                    16 –x–>8 –2x–>4 –3x—>2

                   3x = ( 3  x  5600 )

                    = 16800years

h) 100 grams of a radioactive isotope was reduced 12.5 grams after 81days.Determine the half-life period of the isotope.

                   If  t 1/2  = x then: 

                   100 –x–>50 –2x–>25 –3x—>12.5

                   From 100 to 12.5=3x =81days

                               =>x  = t 1/2

                   = ( 81  / 3 )

                   =  27  days

A graph of activity against time is called decay curve.

 A decay curve can be used to determine the half-life period of an isotope since activity decrease at equal time interval to half the original

20 minutes

 ( 50 – 25 )      =>   ( 40 – 20 )  =  20 minutes

                                                Thus      t ½  20 minutes

(ii)Why does the graph tend to ‘O’?

Smaller particle/s will disintegrate /decay to half its original.

             There can never be ‘O’/zero particles